International Tables for X-ray Crystallography (1962). Vol. III, 2nd ed. Birmingham: Kynoch Press.
Konno, M. \& Saito, Y. (1974). Acta Cryst. B30, 12941299.

Sakai, N., Shirotani, I. \& Minomura, S. (1972). Bull. Chem. Soc. Japan, 45, 3314-3320.
Shirotani, I. \& Kobayashi, H. (1973). Bull. Chem. Soc. Japan, 46, 2595-2596.

Sorai, M. \& Seki, S. (1974). J. Phys. Chem. Solids, 35, 555-570.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Vegter, J. G., Kuindersma, P. I. \& Kommandeur, J. (1971). Conduction in Low-Mobility Materials, edited by N. Klein, D. S. Tannhauser \& M. Pollak, pp. 363-373. London: Taylor and Francis.

The Crystal Structure of Hexagonal $\mathrm{BaSrFe}_{4} \mathrm{O}_{8}$

By M. C. Cadée
Gorlaeus Laboratories, Section of Solid State Chemistry, University of Leiden, P.O.Box 75, Leiden, The Netherlands

(Received 23 October 1974; accepted 24 February 1975)

The structure of hexagonal $\mathrm{BaSrFe}_{4} \mathrm{O}_{8}$ was redetermined and found to be isostructural with $\mathrm{BaCaFe}_{4} \mathrm{O}_{8}$ (space group $P \overline{3} 1 m$). Mössbauer spectra and magnetic measurements showed $\mathrm{BaCaFe}_{4} \mathrm{O}_{8}$ and $\mathrm{BaSrFe} \mathrm{O}_{8}$ to be anti-ferromagnetic, with a Neël temperature higher than $1000 \mathrm{~K} . \mathrm{Ca}^{2+}$ can be substituted by Sr^{2+} only, Fe^{3+} partially by Al^{3+} and Ga^{3+}.

Introduction

Hexagonal $\mathrm{BaSrFe}_{4} \mathrm{O}_{8}$ was first reported by Kanamaru \& Kiriyama (1964). In a determination of the crystal structure (Lucchini, Minichelli \& Meriani, 1973) a structure related to that of $\mathrm{BaAl}_{2} \mathrm{O}_{4}$ (Wallmark \& Westgren, 1937) was found. The X-ray powder diffraction patterns of hexagonal $\mathrm{BaSrFe}_{4} \mathrm{O}_{8}$ prepared by us showed that this compound could be isostructural with $\mathrm{BaCaFe}_{4} \mathrm{O}_{8}$ (Herrmann \& Bacmann, 1971). Comparison of the unit-cell dimensions supported this conclusion. Relating the structure of $\mathrm{BaSrFe}_{4} \mathrm{O}_{8}$ to the structure of $\mathrm{BaAl}_{2} \mathrm{O}_{4}$, the c axis is expected to be about $8.6 \AA$ [mean value of the c axis of $\mathrm{BaAl}_{2} \mathrm{O}_{4}$ and $\mathrm{SrAl}_{2} \mathrm{O}_{4}$ (Glasser \& Dent-Glasser, 1963)]. The unit-cell dimensions of these compounds are presented in Table 1.

Table 1. Unit-cell dimensions (\AA) of some hexagonal $\mathrm{AB}_{2} \mathrm{O}_{4}$ compounds

Compound	a	c	Reference
$\mathrm{BaAl}_{2} \mathrm{O}_{4}$	5.209	8.761	Wallmark \& Westgren (1937)
$\mathrm{SrAl}_{2} \mathrm{O}_{4}$	$5 \cdot 10$	8.49	Glasser \& Dent- Glasser (1963)
$\mathrm{BaCaFe} \mathrm{O}_{8}$	$5 \cdot 407$	7.703	
$\mathrm{BaSrFe} \mathrm{C}_{8}$	$5 \cdot 448$	8.091	Bacmann (1971) Lucchini, Minichelli \& Meriani (1973)
$\mathrm{BaSrFe}_{4} \mathrm{O}_{8}$	$5 \cdot 446$	8.082	This publication
$\mathrm{BaSrFe}_{4} \mathrm{O}_{8}$	5•15	$8 \cdot 62$	Expected for $\mathrm{BaSrFe}_{4} \mathrm{O}_{8}$ related to $\mathrm{BaAl}_{2} \mathrm{O}_{4}$

Experimental

Commercially available $\mathrm{BaCO}_{3}, \mathrm{SrCO}_{3}$ and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ (P. A.) were thoroughly mixed in an agate mortar under acetone and then fired at $1000^{\circ} \mathrm{C}$ for one day, reground and fired twice for several days and finally fired at $1000^{\circ} \mathrm{C}$ for two weeks. The X-ray powder diffraction pattern showed one phase and could be indexed as hexagonal with unit-cell dimensions $a=5 \cdot 4464$ (9) and $c=8.0817$ (14) \AA (the numbers in parentheses giving the standard deviation in units of the last decimal). No systematic absences were found. X-ray intensities were collected from a powder pattern of all reflexions between 5 and 110° in 2θ, recorded with a Philips diffractometer, using $\mathrm{Cu} K \alpha$ radiation with a graphite monochromator.

Models

Five starting models of the $\mathrm{BaSrFe}_{4} \mathrm{O}_{8}$ structure were chosen for a least-squares refinement. The ion positions are shown in Fig. 1 and Table 2.
Model 1 (Fig. 1a) is isostructural with $\mathrm{BaCaFe}_{4} \mathrm{O}_{8}$, spacegroup $P \overline{3} 1 \mathrm{~m}$ with the layer sequence $\mathrm{BaO}_{2}, \mathrm{O}_{3}$, $\mathrm{Sr} \diamond \diamond,{ }^{*} \mathrm{O}_{3}$ and BaO_{2}. The layers are h.c.-stacked. The Fe^{3+} ions are between the BaO_{2} and the O_{3} layers, in a tetrahedron of O^{2-} ions. The Sr^{2+} ion is surrounded by six O^{2-} ions, forming an octahedron. The Ba^{2+} ion is surrounded by $12 \mathrm{O}^{2-}$ ions.

[^0]
$\mathrm{BaOSO} \bigcirc \mathrm{O} \bigcirc \mathrm{Fe} \diamond$ Anion Vacancy
Fig. 1. Projections on the plane ($11 \overline{2} 0$) of the relevant part of the five structure models of hexagonal $\mathrm{BaSrFe}_{4} \mathrm{O}_{8}$, used for the least-squares refinement. The oxygen ions indicated with broken circles are situated above the (1120) plane, the oxygen ions indicated with dotted circles are situated below the ($11 \overline{2} 0$) plane.

Model 2 (Fig. $1 b$) has the same cation positions as the first model, the layer sequence is: $\mathrm{BaO}_{2}, \mathrm{O}_{3}, \mathrm{Sr} \diamond \diamond$, O_{3} and BaO_{2} like the first model, whereas the layers are h.-stacked. The space group is $P \overline{6} 2 m$. The Sr^{2+} ion is surrounded by six O^{2-} ions, forming a trigonal prism.

Model 3 (Fig. 1c) is isostructural with $\mathrm{BaAl}_{2} \mathrm{O}_{4}$; Ba^{2+} and Sr^{2+} are placed in special positions (see Table 2), lowering the symmetry from $P 6_{3} 22$ (space group of $\mathrm{BaAl}_{2} \mathrm{O}_{4}$), to $P 312$. The layer sequence in this model is: $\mathrm{BaO} \diamond, \mathrm{O}_{3}, \mathrm{SrO} \diamond, \mathrm{O}_{3}$, and $\mathrm{BaO} \diamond$; the layers are h.c.-stacked. Both Ba^{2+} and Sr^{2+} are surrounded by nine O^{2-} ions, three in their own layer, three in the lower and three in the upper layer, the latter six O^{2-} ions forming an octahedron. The Fe^{3+} ions are between the layers, surrounded by a tetrahedron of O^{2-} ions.

Model 4 (Fig. 1d) has the same cation positions as the third model and the same layer sequence, with h.stacked layers. The space group is $P \overline{6} . \mathrm{Ba}^{2+}$ and Sr^{2+} are both surrounded by nine O^{2-} ions, like the third model, but the six O^{2-} ions in the O_{3} layers are now forming a trigonal prism.

Model 5 (Fig. 1e) is the structure found by Lucchini, Minichelli \& Meriani (1973). The space group is $P \overline{6} m 2$, the layer sequence is: $\mathrm{BaO} \diamond \mathrm{O}_{3} \diamond \mathrm{SrO} \diamond$, and $\mathrm{BaO} \diamond$. The coordination of the Ba^{2+} ion and the Sr^{2+} ion is not easy to describe. The Fe^{3+} ions are lying between the layers, surrounded by a tetrahedron of O^{2-} ions. The Fe^{3+} ions are lying almost in the $\mathrm{O}_{3} \diamond$ layers, the tetrahedra are strongly distorted.

Structure determination

For the least-squares refinement the computer program $T 53$ for overlapping powder reflexions was used (Rietveld, 1969). Atomic scattering curves were taken from Cromer \& Waber (1965). The observed intensities were used without absorption correction.

The best agreement was found with model 1 , the

Table 2. Ion positions of the five starting models of $\mathrm{BaSrFe}_{4} \mathrm{O}_{8}$									
Model	Space group	Ba^{2+}	Sr^{2+}	$\mathrm{Fe}^{3+}(1)$	$\mathrm{Fe}^{3+}(2)$	O^{2-} (1)	$\mathrm{O}^{2-}(2)$	$\mathrm{O}^{2-}(3)$	
1. h.c. $\mathrm{BaCaFe}_{4} \mathrm{O}_{8}$	$P \overline{3} 1 m$	1 (a)	1 (b)	4 (h)		2 (c)	6 (k)		
		0	0	$\frac{1}{3}$		$\frac{1}{3}$	0.333		(x)
		0	0	$\frac{2}{3}$		$\frac{2}{3}$	0		(y)
		0	$\frac{1}{2}$	$0 \cdot 188$		0	$0 \cdot 260$		(z)
2. h. $\mathrm{BaCaFe}_{4} \mathrm{O}_{8}$	P62m	1 (a)	1 (b)	4 (h)		2 (c)	6 (i)		
		0	0	$\frac{1}{3}$		$\frac{1}{3}$	0.333		(x)
		0	0	$\frac{2}{3}$		$\frac{2}{3}$	0		(y)
		0	$\frac{1}{2}$	$0 \cdot 188$		0	0.260		(z)
3. h.c. $\mathrm{BaAl}_{2} \mathrm{O}_{4}$	P312	1 (a)	1 (b)	2 (h)	2 (i)	1 (c)	1 (f)	6 (l)	
		0	0	$\frac{1}{3}$	${ }^{2}$	$\frac{1}{3}$	$\frac{2}{3}$	0.333	(x)
		0	0	$\frac{2}{3}$	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{1}{3}$	0.001	(y)
		0	$\frac{1}{2}$	$0 \cdot 188$	0.313	0	$\frac{1}{2}$	0.260	(z)
4. h. $\mathrm{BaAl}_{2} \mathrm{O}_{4}$	$P 6$	1 (a)	1 (b)	2 (h)	2 (i)	1 (c)	1 (f)	6 (l)	
		0	0	$\frac{1}{3}$	${ }^{\frac{2}{3}}$	$\frac{1}{3}$	$\frac{2}{3}$	0.333	(x)
		0	0	$\frac{2}{3}$	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{1}{3}$	0.001	(y)
		0	$\frac{1}{2}$	0.188	0.313	0	$\frac{1}{2}$	$0 \cdot 260$	(z)
5. Lucchini	$P 6 m 2$	1 (a)	1 (b)	2 (h)	2(i)	1 (c)	1 (f)	6 (n)	
		0	0	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{1}{3}$	${ }_{3}^{2}$	0.515	(x)
		0	0	${ }^{\frac{2}{3}}$	$\frac{1}{\frac{1}{3}}$	$\frac{2}{3}$	$\frac{1}{3}$	0.485	(y)
		0	$\frac{1}{2}$	$0 \cdot 245$	$0 \cdot 255$	0	$\frac{1}{2}$	$0 \cdot 260$	(z)

final R value was 0.041 ($\left.R=\sum\left|I_{\text {obs }}-I_{\text {calc }}\right| / \sum I_{\text {obs }}\right)$. The final R value of model 2 was 0.058 , which is understandable since the difference between the models is only in the positions of three O^{2-} ions. The other models generated very high R values. Hexagonal $\mathrm{BaSrFe} \mathrm{C}_{4}$ 號 thus found to be isostructural with $\mathrm{BaCaFe}_{4} \mathrm{O}_{8}$. The final parameters are listed in Table 3, with the final parameters of the refinement of model 2. Table 4 shows the shortest distances for the refinements of models 1 (see also Fig. 2) and 2, calculated by the computer program T172 (Rietveld, 1969). Table 5 shows the observed and calculated intensities and d values of the reflexions.*
A calculation with the computer program $T 53$, using the reflexion data of Lucchini, Minichelli \& Meriani (1973), showed better results using the final parameters of $\mathrm{BaSrFe}_{4} \mathrm{O}_{8} P \overline{3} 1 m$ than using the final parameters published by Lucchini, Minichelli \& Meriani. All calculations were carried out with the I.B.M. 370 computer of the University of Leiden.

Discussion of the structure

The final z parameter of the Fe^{3+} ions and the O^{2-} ions in the $6(k)$ position differs considerably from the starting parameters. In the models the $\mathrm{Sr} \diamond \diamond$ layer is considered to be equivalent to the O_{3} layers in the stacking. This of course is not true: the O_{3} layers are situated nearer to the $\mathrm{Sr} \diamond \diamond$ than to the BaO_{2} layer, so the z parameter of the O^{2-} ions in the $6(k)$ position will increase. The Fe^{3+} ions are situated in a tetrahedron of O^{2-} ions, with an increasing z parameter too, as in the final structure the Fe^{3+} ions are situated in an almost ideal tetrahedron of O^{2-} ions. The same effect was found for $\mathrm{BaCaFe}_{4} \mathrm{O}_{8}$ (Herrmann \& Bacmann, 1971). The $\mathrm{Sr} \diamond \diamond$ layer, or in $\mathrm{BaCaFe}_{4} \mathrm{O}_{8}$ the

[^1]$\mathrm{Ca} \diamond \diamond$ layer, is not very realistic but useful for the description of the structure. A more realistic description of the $\mathrm{BaCaFe}_{4} \mathrm{O}_{8}$ structure is a c.-stacked anion lattice with the layer sequence $\mathrm{BaO}_{2}, \mathrm{O}_{3}, \mathrm{O}_{3}$ and BaO_{2} with Ca^{2+} in an octahedron of O^{2-} ions between the two O_{3} layers and the four Fe^{3+} ions in tetrahedra of O^{2-} ions between the BaO_{2} and the O_{3} layers. This structure resembles the structure of $\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2}$, also a c.-stacked anion lattice, with layer sequence $\mathrm{KO}_{2}, \mathrm{O}_{3}, \mathrm{O}_{3}$ and KO_{2} with Al^{3+} in an octahedron of O^{2-} ions between the two O_{3} layers and the two sulphur ions in tetrahedra of O^{2-} ions between the KO_{2} and the O_{3} layers (Manoli, Herpin \& Pannetier, 1970).

Lattice Energy of $\mathrm{BaSrFe}_{\mathbf{4}} \mathrm{O}_{8}$

The Madelung part of the lattice energy (MAPLE) (Hoppe, 1970) was calculated by the MADF computer program of the University of Giessen (West Germany). The MAPLE value of $\mathrm{BaSrFe}_{4} \mathrm{O}_{8}, P \overline{3} 1 \mathrm{~m}$, is somewhat higher than that of $\mathrm{BaSrFe}_{4} \mathrm{O}_{8}, P \overline{6} 2 \mathrm{~m}$, owing to the larger $\mathrm{Ba}-\mathrm{O}(2)$ distances in $\mathrm{BaSrFe}_{4} \mathrm{O}_{8}, P \overline{6} 2 m$. The MAPLE balance of the formation of $\mathrm{BaSrFe}_{4} \mathrm{O}_{8}, P \overline{3} 1 m$, from the binary oxides is positive, owing to the lower coordination number of the O^{2-} ions (4.5 in the binary

Fig. 2. Projection on the plane ($11 \overline{2} 0$) of the relevant part of the structure of hexagonal $\mathrm{BaSrFe}_{4} \mathrm{O}_{8}$ with indicated shortest distances. The oxygen ions indicated with broken circles are situated above the ($11 \overline{2} 0$) plane, the oxygen ions indicated with dotted circles are situated below the (1120) plane.

Table 3. Final parameters of the refinements of models 1 and 2 of hexagonal $\mathrm{BaSrFe}_{4} \mathrm{O}_{8}$

	Space-group $P \overline{3} 1 m$, model 1				Space-group $P \overline{6} 2 m$, model 2				
	x	y	z	B		x	y	z	B
$\mathrm{Ba}^{2+} 1(a)$	0	0	0	1.03 (14)	$\mathrm{Ba}^{2+} 1(a)$	0	0	0	0.97 (17)
$\mathrm{Sr}^{2+} 1$ (b)	0	0	$\frac{1}{2}$	$0 \cdot 14$ (18)	$\mathrm{Sr}^{2+} 1$ (b)	0	0	$\frac{1}{2}$	$0 \cdot 20$ (23)
$\mathrm{Fe}^{3+} 4(h)$	$\frac{1}{3}$	$\frac{2}{3}$	$0 \cdot 2293$ (9)	$0 \cdot 60$ (14)	$\mathrm{Fe}^{3+} 4(h)$	$\frac{1}{3}$	2	$0 \cdot 228$ (1)	0.62 (18)
O^{2-} (1) 2 (c)	$\frac{1}{3}$	$\frac{3}{3}$	0	1.6 (10)	O^{2-} (1) 2 (c)	$\frac{1}{3}$	$\frac{2}{3}$	0	$0 \cdot 62$ (110)
$\mathrm{O}^{2-}(2) 6$ (k)	$0 \cdot 347$ (4)	0	$0 \cdot 296$ (3)	$0 \cdot 70$ (60)	$\mathrm{O}^{2-}(2) 6$ (i)	0.349 (5)	0	$0 \cdot 303$ (3)	$1 \cdot 77$ (84)

Table 4. Shortest distances (\AA) from the final refinements of models 1 and 2 of hexagonal $\mathrm{BaSrFe}_{4} \mathrm{O}_{8}$

Space-group $P \overline{3} 1 m$, model 1					
	Ba^{2+}				
Sr^{2+}	Fe^{3+}	$\mathrm{O}^{2-}(1)$	$\mathrm{O}^{2-}(2)$		
Ba^{2+}	$5.4464(0)$	$4.0409(0)$	$3.650(4)$	$3.1445(0)$	$3.05(2)$
S^{2+}	$4.0409(0)$	$5.4464(0)$	$3.830(4)$	>4.0	$2.51(2)$
Fe^{3+}	$3.650(4)$	$3.830(4)$	$3.1444(6)$	$1.85(1)$	$1.86(1)$
$\mathrm{O}^{2-}(1)$	$3.1445(0)$	>4.0	$1.85(1)$	$3.1440(0)$	$2.98(2)$
$\mathrm{O}^{2-}(2)$	$3.05(2)$	$2.51(2)$	$1.86(1)$	$2.98(2)$	$3.08(1)$

Space-group $P 62 m$, model 2					
	Ba^{2+}	Sr^{2+}	Fe^{3+}	$\mathrm{O}^{2-}(1)$	$\mathrm{O}^{2-}(2)$
Ba^{2+}	$5 \cdot 4464$ (0)	4.0409 (0)	3.646(4)	$3 \cdot 1445$ (0)	$3 \cdot 10$ (3)
Sr^{2+}	4.0409 (0)	$5 \cdot 4464$ (0)	$3 \cdot 836$ (5)	>4.0	$2 \cdot 48$ (3)
Fe^{3+}	3.645 (4)	$3 \cdot 836$ (5)	$3 \cdot 1444$ (6)	1.84 (1)	1.87 (2)
O^{2-} (1)	$3 \cdot 1444$ (0)	>4.0	1.84 (1)	$3 \cdot 1445$ (0)	3.02 (2)
$\mathrm{O}^{2-}(2)$	$3 \cdot 10$ (3)	$2 \cdot 48$ (3)	1.87 (2)	3.02 (2)	3.07 (2)

oxides, 4.25 in $\mathrm{BaSrFe}_{4} \mathrm{O}_{8}$). The MAPLE value is within the range of 2% of the sum of the MAPLE values of the binary oxides ($\mathrm{SrO}, \mathrm{BaO}, 2 \mathrm{Fe}_{2} \mathrm{O}_{3}$). This is an indication that the structure found is a realistic one (Vielhaber \& Hoppe, 1971, 1972). The MAPLE value of model 5 is 9% higher than the sum of the binary oxides. The MAPLE values are shown in Table 6.

Table 6. MAPLE values in $\mathrm{kcal} \mathrm{mol}^{-1}$ of the $\mathrm{BaSrFe}_{4} \mathrm{O}_{8}$ models 1 and 2 and the constituting binary oxides

Ion	MAPLE binary oxides	MAPLE $\mathrm{BaSrFe}_{4} \mathrm{O}_{8}, P \overline{3} 1 \mathrm{~m}$	MAPLE $\mathrm{BaSrFe}_{4} \mathrm{O}_{8}, P 62 \mathrm{~m}$
Ba^{2+}	$420 \cdot 0$	$355 \cdot 8$	$331 \cdot 3$
Sr^{2+}	$449 \cdot 5$	$508 \cdot 1$	$536 \cdot 0$
Fe^{3+}	$1200 \cdot 3$	$1195 \cdot 9$	$1183 \cdot 6$
$\mathrm{O}^{2-}(\mathrm{BaO})$	$420 \cdot 0$		
$\mathrm{O}^{2-}(\mathrm{SrO})$	$449 \cdot 5$		
$\mathrm{O}^{2-}\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$	$573 \cdot 4$		
O^{2-} (gem.)	538.7		
$\mathrm{O}^{2-}(1)$		$567 \cdot 1$	$595 \cdot 8$
O^{2-} (2)		$546 \cdot 9$	$532 \cdot 8$
O^{2-} (gem.)		$552 \cdot 0$	$547 \cdot 3$
Total	$9979 \cdot 7$	$10062 \cdot 6$	$9987 \cdot 7$

Magnetic properties

Mössbauer spectroscopy showed a strong magnetic order at room temperature ($\mathrm{H}=425 \mathrm{kOe}$ for $\mathrm{BaCaFe}_{4} \mathrm{O}_{8}$ and $H=415 \mathrm{kOe}$ for $\mathrm{BaSrFe}_{4} \mathrm{O}_{8}$). Magnetic measurements carried out with a Faraday balance showed both compounds to be antiferromagnetic. The Neël temperature could not be detected, for it was out of the range of the apparatus, but is over 1000 K , the upper limit of our measurements. Herrmann \& Bacmann (1971) also found $\mathrm{BaCaFe}_{4} \mathrm{O}_{8}$ to be antiferromagnetic, with a Neël temperature of 779 K , measured by the disappearance of the magnetic scattering by neutrons.

Substitutions in the $\mathrm{BaCaFe}_{4} \mathrm{O}_{8}$ structure

Several attempts to substitute Ca^{2+} by Pb^{2+} or Mn^{2+} met with no success. The Fe^{3+} ions could be substituted part ally by Al^{3+} and Ga^{3+} : the pure compounds $\mathrm{BaCaFe}_{3} \mathrm{AlO}_{8}$ and $\mathrm{BaCaGa}_{2} \mathrm{Fe}_{2} \mathrm{O}_{8}$ were prepared at respectively 1000 and $1200^{\circ} \mathrm{C}$ with a firing time of
two weeks, the sample being reground several times. Attempts to substitute more Al^{3+} and Ga^{3+} were not successful, as other phases appeared. Because of the reported high-temperature phase of $\mathrm{BaSrFe}_{4} \mathrm{O}_{8}$ (Meriani \& Sloccardi, 1970), d.t.a. experiments were carried out in order to find other high-temperature phases and their melting points. The results are compiled in Table 7.

Table 7. Results of d.t.a. experiments

	Transi- tion point I I	Transi- tion point II	melting	
point				
Compound				
$\mathrm{BaCaFe}_{4} \mathrm{O}_{8}$		$1220^{\circ} \mathrm{C}$	Congruent	
$\mathrm{BaSrFe}_{4} \mathrm{O}_{8}$	$1190^{\circ} \mathrm{C}$	$1220^{\circ} \mathrm{C}$	1255	Incongruent
$\mathrm{BaCaAlFe}_{3} \mathrm{O}_{8}$			1232	Incongruent
$\mathrm{BaCaFa}_{2} \mathrm{Fe}_{2} \mathrm{O}_{8}$			1255	Incongruent

I thank Dr D. J. W. Ydo and Dr A. B. A. Schippers for encouraging discussions, Drs E. C. Kruissink for the d.t.a. experiments, Drs Vermaas for the Mössbauer spectroscopy and Drs J. A. R. van Veen for the magnetic measurements.

References

Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104109.

Glasser, F. P. \& Dent-Glasser, L. S. (1963). J. Amer. Ceram. Soc. 46, 377-380.
Hermann, D. \& Bacmann, M. (1971). Mat. Res. Bull. 6, 725-736.
Hoppe, R. (1970). Advanc. Fluorine Chem. 6, 387.
Kanamaru, F. \& Kiriyama, R. (1964). Mem. Inst. Sci. Ind. Res. Osaka Univ. 21, 89-110.
Lucchini, E., Minichelli, D. \& Meriani, S. (1973). Acta Cryst. B29, 919.
Manoli, J. M., Herpin, P. \& Pannetier, G. (1970). Bull. Soc. Chim. Fr. (A), pp. 98-101.
Meriani, S. \& Sloccardi, G. (1970). Acta Cryst. B26, 1184-1185.
Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65.
Vielhaber, E. \& Hoppe, R. (1971). Z. anorg. allgem. Chem. 382, 270-280.
Vielhaber, E. \& Hoppe, R. (1972). Z. anorg. allgem. Chem. 392, 209-218.
Wallmark, S. \& Westgren, A. (1937). Ark. Kem. Miner. Geol. Sverige, 12B, 1-4.

[^0]: * The symbol \diamond means an oxygen vacancy.

[^1]: * This table has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30974 (4 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH11NZ, England.

