- International Tables for X-ray Crystallography (1962). Vol. III, 2nd ed. Birmingham: Kynoch Press.
- KONNO, M. & SAITO, Y. (1974). Acta Cryst. B30, 1294-1299.
- SAKAI, N., SHIROTANI, I. & MINOMURA, S. (1972). Bull. Chem. Soc. Japan, 45, 3314–3320.
- SHIROTANI, I. & KOBAYASHI, H. (1973). Bull. Chem. Soc. Japan, 46, 2595–2596.
- SORAI, M. & SEKI, S. (1974). J. Phys. Chem. Solids, 35, 555–570.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.
- VEGTER, J. G., KUINDERSMA, P. I. & KOMMANDEUR, J. (1971). Conduction in Low-Mobility Materials, edited by N. KLEIN, D. S. TANNHAUSER & M. POLLAK, pp. 363–373. London: Taylor and Francis.

Acta Cryst. (1975). B31, 2012

The Crystal Structure of Hexagonal BaSrFe₄O₈

BY M. C. CADÉE

Gorlaeus Laboratories, Section of Solid State Chemistry, University of Leiden, P.O.Box 75, Leiden, The Netherlands

(Received 23 October 1974; accepted 24 February 1975)

The structure of hexagonal BaSrFe₄O₈ was redetermined and found to be isostructural with BaCaFe₄O₈ (space group $P\overline{3}1m$). Mössbauer spectra and magnetic measurements showed BaCaFe₄O₈ and BaSrFe₄O₈ to be anti-ferromagnetic, with a Neël temperature higher than 1000K. Ca²⁺ can be substituted by Sr²⁺ only, Fe³⁺ partially by Al³⁺ and Ga³⁺.

Introduction

Hexagonal BaSrFe₄O₈ was first reported by Kanamaru & Kiriyama (1964). In a determination of the crystal structure (Lucchini, Minichelli & Meriani, 1973) a structure related to that of BaAl₂O₄ (Wallmark & Westgren, 1937) was found. The X-ray powder diffraction patterns of hexagonal BaSrFe₄O₈ prepared by us showed that this compound could be isostructural with BaCaFe₄O₈ (Herrmann & Bacmann, 1971). Comparison of the unit-cell dimensions supported this conclusion. Relating the structure of BaSrFe₄O₈ to the structure of BaAl₂O₄, the *c* axis is expected to be about 8.6 Å [mean value of the *c* axis of BaAl₂O₄ and SrAl₂O₄ (Glasser & Dent-Glasser, 1963)]. The unit-cell dimensions of these compounds are presented in Table 1.

Table 1. Unit-cell dimensions (Å) of some hexagonal AB_2O_4 compounds

Compound	а	с	Reference
BaAl ₂ O ₄	5.209	8.761	Wallmark & West- gren (1937)
SrAl ₂ O ₄	5.10	8.49	Glasser & Dent- Glasser (1963)
BaCaFe ₄ O ₈	5.407	7.703	Herrmann & Bacmann (1971)
$BaSrFe_4O_8$	5.448	8.091	Lucchini, Minichelli & Meriani (1973)
BaSrFe₄O ₈	5.446	8.082	This publication
BaSrFe ₄ O ₈	5.15	8.62	Expected for
			$BaSrFe_4O_8$ related to
			BaAl ₂ O ₄

Experimental

Commercially available BaCO₃, SrCO₃ and Fe₂O₃ (P. A.) were thoroughly mixed in an agate mortar under acetone and then fired at 1000 °C for one day, reground and fired twice for several days and finally fired at 1000 °C for two weeks. The X-ray powder diffraction pattern showed one phase and could be indexed as hexagonal with unit-cell dimensions a=5.4464(9) and c=8.0817(14) Å (the numbers in parentheses giving the standard deviation in units of the last decimal). No systematic absences were found. X-ray intensities were collected from a powder pattern of all reflexions between 5 and 110° in 2 θ , recorded with a Philips diffractometer, using Cu K α radiation with a graphite monochromator.

Models

Five starting models of the $BaSrFe_4O_8$ structure were chosen for a least-squares refinement. The ion positions are shown in Fig. 1 and Table 2.

Model 1 (Fig. 1*a*) is isostructural with BaCaFe₄O₈, spacegroup $P\overline{3}1m$ with the layer sequence BaO₂, O₃, Sr \diamond ,* O₃ and BaO₂. The layers are h.c.-stacked. The Fe³⁺ ions are between the BaO₂ and the O₃ layers, in a tetrahedron of O²⁻ ions. The Sr²⁺ ion is surrounded by six O²⁻ ions, forming an octahedron. The Ba²⁺ ion is surrounded by 12 O²⁻ ions.

^{*} The symbol \diamond means an oxygen vacancy.

ØBa ⊗Sr ○ ○ ○ 0 •Fe ◇Anion Vacancy

Model 2 (Fig. 1b) has the same cation positions as the first model, the layer sequence is: BaO₂, O₃, Sr \diamond , O₃ and BaO₂ like the first model, whereas the layers are h.-stacked. The space group is $P\overline{6}2m$. The Sr²⁺ ion is surrounded by six O²⁻ ions, forming a trigonal prism.

Model 3 (Fig. 1c) is isostructural with $BaAl_2O_4$; Ba^{2+} and Sr^{2+} are placed in special positions (see Table 2), lowering the symmetry from $P6_322$ (space group of $BaAl_2O_4$), to P312. The layer sequence in this model is: $BaO\diamondsuit$, O_3 , $SrO\diamondsuit$, O_3 , and $BaO\diamondsuit$; the layers are h.c.-stacked. Both Ba^{2+} and Sr^{2+} are surrounded by nine O^{2-} ions, three in their own layer, three in the lower and three in the upper layer, the latter six O^{2-} ions forming an octahedron. The Fe³⁺ ions are between the layers, surrounded by a tetrahedron of O^{2-} ions.

Model 4 (Fig. 1d) has the same cation positions as the third model and the same layer sequence, with h.stacked layers. The space group is $P\overline{6}$. Ba²⁺ and Sr²⁺ are both surrounded by nine O²⁻ ions, like the third model, but the six O²⁻ ions in the O₃ layers are now forming a trigonal prism.

Model 5 (Fig. 1e) is the structure found by Lucchini, Minichelli & Meriani (1973). The space group is $P\overline{6}m^2$, the layer sequence is: BaO \diamond O₃ \diamond SrO \diamond , and BaO \diamond . The coordination of the Ba²⁺ ion and the Sr²⁺ ion is not easy to describe. The Fe³⁺ ions are lying between the layers, surrounded by a tetrahedron of O²⁻ ions. The Fe³⁺ ions are lying almost in the O₃ \diamond layers, the tetrahedra are strongly distorted.

Structure determination

For the least-squares refinement the computer program T53 for overlapping powder reflexions was used (Rietveld, 1969). Atomic scattering curves were taken from Cromer & Waber (1965). The observed intensities were used without absorption correction.

The best agreement was found with model 1, the

Model	Space group	Ba ²⁺	Sr ²⁺	$Fe^{3+}(1)$	$Fe^{3+}(2)$	$O^{2-}(1)$	$O^{2}(2)$	$O^{2}(3)$	
1. h.c. BaCaFe₄O ₈	$P\overline{3}1m$	1(a)	1 (b)	4(h)		2(c)	6 (k)		
		0`´	0`´	ŧ		ŧ	0.333		(x)
		0	0	2		2	0		(y)
		0	4	0·188		ŏ	0.260		(z)
2. h. BaCaFe ₄ O ₈	P62m	1 (a)	Ĩ (b)	4 (h)		2 (c)	6 (i)		•
		0`´	0 `	1		3	0.333		(x)
		0	0	23		23	0		(y)
		0	ł	0.188		Õ	0.260		(z)
3. h.c. BaAl ₂ O ₄	P312	1 (a)	ī (b)	2 (h)	2 (i)	1 (c)	1(f)	6 (<i>l</i>)	
		0	0	3	23	3	3	0.333	(x)
		0	0	23	13	2 3	13	0.001	(y)
		0	$\frac{1}{2}$	0.188	0.313	Ō	1/2	0.260	(z)
4. h. BaAl ₂ O ₄	Рб	1 (a)	1 (b)	2 (h)	2 (i)	1 (c)	1(f)	6 (<i>l</i>)	
		0	0	ł	23	$\frac{1}{3}$	3	0.333	(x)
		0	0	3	13	23	3	0.001	(y)
		0	ł	0.188	0.313	0	ł	0.260	(z)
5. Lucchini	P6m2	1 (a)	1 (b)	2 (h)	2(<i>i</i>)	1 (c)	1(f)	6 (n)	
		0	0	\$	$\frac{2}{3}$]	3	0.515	(<i>x</i>)
		0	0	23	ł	23	13	0.485	(y)
		0	$\frac{1}{2}$	0.245	0.255	0	$\frac{1}{2}$	0.260	(z)

Table 2. Ion positions of the five starting models of BaSrFe₄O₈

final R value was 0.041 ($R = \sum |I_{obs} - I_{calc}| / \sum I_{obs}$). The final R value of model 2 was 0.058, which is understandable since the difference between the models is only in the positions of three O²⁻ ions. The other models generated very high R values. Hexagonal BaSrFe₄O₈ is thus found to be isostructural with BaCaFe₄O₈. The final parameters are listed in Table 3, with the final parameters of the refinement of model 2. Table 4 shows the shortest distances for the refinements of models 1 (see also Fig. 2) and 2, calculated by the computer program T172 (Rietveld, 1969). Table 5 shows the observed and calculated intensities and d values of the reflexions.*

A calculation with the computer program T53, using the reflexion data of Lucchini, Minichelli & Meriani (1973), showed better results using the final parameters of BaSrFe₄O₈ $P\overline{3}1m$ than using the final parameters published by Lucchini, Minichelli & Meriani. All calculations were carried out with the I.B.M. 370 computer of the University of Leiden.

Discussion of the structure

The final z parameter of the Fe³⁺ ions and the O²⁻ ions in the 6(k) position differs considerably from the starting parameters. In the models the Sr $\diamond\diamond$ layer is considered to be equivalent to the O₃ layers in the stacking. This of course is not true: the O₃ layers are situated nearer to the Sr $\diamond\diamond$ than to the BaO₂ layer, so the z parameter of the O²⁻ ions in the 6(k) position will increase. The Fe³⁺ ions are situated in a tetrahedron of O²⁻ ions, with an increasing z parameter too, as in the final structure the Fe³⁺ ions are situated in an almost ideal tetrahedron of O²⁻ ions. The same effect was found for BaCaFe₄O₈ (Herrmann & Bacmann, 1971). The Sr $\diamond\diamond$ layer, or in BaCaFe₄O₈ the

* This table has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30974 (4 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England. Ca \diamond layer, is not very realistic but useful for the description of the structure. A more realistic description of the BaCaFe₄O₈ structure is a c.-stacked anion lattice with the layer sequence BaO₂, O₃, O₃and BaO₂ with Ca²⁺ in an octahedron of O²⁻ ions between the two O₃ layers and the four Fe³⁺ ions in tetrahedra of O²⁻ ions between the BaO₂ and the O₃ layers. This structure resembles the structure of KAl(SO₄)₂, also a c.-stacked anion lattice, with layer sequence KO₂, O₃, O₃ and KO₂ with Al³⁺ in an octahedron of O²⁻ ions between the two O₃ layers and the two sulphur ions in tetrahedra of O²⁻ ions between the two O₃ layers and the two sulphur ions in tetrahedra of O²⁻ ions between the two Sulphur ions in tetrahedra of O²⁻ ions between the KO₂ and the O₃ layers (Manoli, Herpin & Pannetier, 1970).

Lattice Energy of BaSrFe₄O₈

The Madelung part of the lattice energy (MAPLE) (Hoppe, 1970) was calculated by the MADF computer program of the University of Giessen (West Germany). The MAPLE value of BaSrFe₄O₈, $P\overline{3}1m$, is somewhat higher than that of BaSrFe₄O₈, $P\overline{6}2m$, owing to the larger Ba-O(2) distances in BaSrFe₄O₈, $P\overline{6}2m$. The MAPLE balance of the formation of BaSrFe₄O₈, $P\overline{3}1m$, from the binary oxides is positive, owing to the lower coordination number of the O²⁻ ions (4.5 in the binary

Table 3. Final parameters of the refinements of models 1 and 2 of hexagonal BaSrFe₄O₈

Space-group $P\overline{3}1m$, model 1				Space-group P62m, model 2					
	x	У	z	В		x	v	Z	В
$Ba^{2+} 1 (a)$	0	0	0	1.03 (14)	$Ba^{2+} 1(a)$	0	0	0	0.97 (17)
$Sr^{2+} 1(b)$	0	0	$\frac{1}{2}$	0.14 (18)	$Sr^{2+} 1(b)$	0	0	ş	0·20 (23)
$Fe^{3+} 4(h)$	$\frac{1}{3}$	$\frac{2}{3}$	0·2293 (9)	0.60 (14)	$Fe^{3+} 4(h)$	13	23	0.228(1)	0.62 (18)
$O^{2-}(1) 2 (c)$]	23	0	1.6 (10)	$O^{2}(1) 2(c)$	$\frac{1}{3}$	23	0	0.62 (110)
$O^{2}(2) = 6(k)$	0.347 (4)	0	0.296 (3)	0.70 (60)	$O^{2}(2) = (i)$	0.349 (5)	0	0.303 (3)	1.77 (84)

Table 4. Shortest distances (Å) from the final refinements of models 1 and 2 of hexagonal BaSrFe₄O₈

Space-group $P\overline{3}1m$, model 1					Space-group P62m, model 2						
	Ba ² +	Sr ² +	Fe ³⁺	$O^{2}(1)$	O ² ⁻ (2)		Ba ²⁺	Sr ² +	Fe ^{3 +}	O ²⁻ (1)	O ²⁻ (2)
Ba ^{2 +}	5.4464 (0)	4.0409 (0)	3.650 (4)	3.1445 (0)	3.05 (2)	Ba ² +	5.4464 (0)	4.0409 (0)	3.646(4)	3.1445 (0)	3.10 (3)
Sr ²⁺	4.0409 (0)	5.4464(0)	3.830 (4)	>4.0	2.51 (2)	Sr ²⁺	4.0409 (0)	5.4464 (0)	3.836 (5)	> 4.0	2.48 (3)
Fe ^{3 +}	3.650 (4)	3.830 (4)	3.1444 (6)	1.85 (1)	1.86 (1)	Fe ^{3 +}	3.645 (4)	3.836 (5)	3.1444 (6)	1.84 (1)	1.87 (2)
$O^{2-}(1)$	3.1445 (0)	> 4.0	1.85 (1)	3.1440 (0)	2.98 (2)	$O^{2-}(1)$	3.1444 (0)	> 4.0	1.84 (1)	3.1445 (0)	3.02 (2)
$O^{2}(2)$	3.05 (2)	2.51 (2)	1.86 (1)	2.98 (2)	3.08 (1)	$O^{2-}(2)$	3.10 (3)	2.48 (3)	1.87 (2)	3.02 (2)	3.07 (2)

oxides, 4.25 in $BaSrFe_4O_8$). The MAPLE value is within the range of 2% of the sum of the MAPLE values of the binary oxides (SrO, BaO, 2Fe₂O₃). This is an indication that the structure found is a realistic one (Vielhaber & Hoppe, 1971, 1972). The MAPLE value of model 5 is 9% higher than the sum of the binary oxides. The MAPLE values are shown in Table 6.

Table 6. MAPLE values in kcal mol⁻¹ of the BaSrFe₄O₈ models 1 and 2 and the constituting binary oxides

Inn	MAPLE	MAPLE	MAPLE
Ion	oxides	BaSrFe ₄ O ₈ , $P\overline{3}1m$	BaSrFe ₄ O ₈ , P62m
Ba ² +	420·0	355.8	331.3
Sr ² +	449.5	508.1	536.0
Fe ³⁺	1200.3	1195.9	1183.6
O ²⁻ (BaO)	420.0		
$O^{2-}(SrO)$	449.5		
$O^{2-}(Fe_{2}O_{3})$	573.4		
$O^{2-}(gem.)$	538.7		
$O^{2-(1)}$		567.1	595.8
$O^{2}(2)$		546.9	532.8
O^{2-} (gem.)		552.0	547.3
Total	99 79•7	10062.6	9987.7

Magnetic properties

Mössbauer spectroscopy showed a strong magnetic order at room temperature (H=425kOe for BaCaFe₄O₈ and H=415kOe for BaSrFe₄O₈). Magnetic measurements carried out with a Faraday balance showed both compounds to be antiferromagnetic. The Neël temperature could not be detected, for it was out of the range of the apparatus, but is over 1000K, the upper limit of our measurements. Herrmann & Bacmann (1971) also found BaCaFe₄O₈ to be antiferromagnetic, with a Neël temperature of 779K, measured by the disappearance of the magnetic scattering by neutrons.

Substitutions in the BaCaFe₄O₈ structure

Several attempts to substitute Ca^{2+} by Pb^{2+} or Mn^{2+} met with no success. The Fe³⁺ ions could be substituted partially by Al^{3+} and Ga^{3+} : the pure compounds BaCaFe₃AlO₈ and BaCaGa₂Fe₂O₈ were prepared at respectively 1000 and 1200 °C with a firing time of

two weeks, the sample being reground several times. Attempts to substitute more Al^{3+} and Ga^{3+} were not successful, as other phases appeared. Because of the reported high-temperature phase of BaSrFe₄O₈ (Meriani & Sloccardi, 1970), d.t.a. experiments were carried out in order to find other high-temperature phases and their melting points. The results are compiled in Table 7.

Table 7. Results of d.t.a. experiments

	Transi- Transi- tion tion point I point II	Melting point	
Compound		-	
BaCaFe ₄ O ₈		1220°C	Congruent
BaSrFe ₄ O ₈	1190°C 1220°C	2 1255	Incongruent
BaCaAlFe ₃ O ₈		1232	Incongruent
BaCaGa ₂ Fe ₂ O ₈		1255	Incongruent

I thank Dr D. J. W. Ydo and Dr A. B. A. Schippers for encouraging discussions, Drs E. C. Kruissink for the d.t.a. experiments, Drs Vermaas for the Mössbauer spectroscopy and Drs J. A. R. van Veen for the magnetic measurements.

References

- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104– 109.
- GLASSER, F. P. & DENT-GLASSER, L. S. (1963). J. Amer. Ceram. Soc. 46, 377-380.
- HERMANN, D. & BACMANN, M. (1971). Mat. Res. Bull. 6, 725–736.
- HOPPE, R. (1970). Advanc. Fluorine Chem. 6, 387.
- KANAMARU, F. & KIRIYAMA, R. (1964). Mem. Inst. Sci. Ind. Res. Osaka Univ. 21, 89–110.
- LUCCHINI, E., MINICHELLI, D. & MERIANI, S. (1973). *Acta Cryst.* B 29, 919.
- MANOLI, J. M., HERPIN, P. & PANNETIER, G. (1970). Bull. Soc. Chim. Fr. (A), pp. 98-101.
- MERIANI, S. & SLOCCARDI, G. (1970). Acta Cryst. B26, 1184-1185.
- RIETVELD, H. M. (1969). J. Appl. Cryst. 2, 65.
- VIELHABER, E. & HOPPE, R. (1971). Z. anorg. allgem. Chem. 382, 270–280.
- VIELHABER, E. & HOPPE, R. (1972). Z. anorg. allgem. Chem. 392, 209–218.
- WALLMARK, S. & WESTGREN, A. (1937). Ark. Kem. Miner. Geol. Sverige, 12B, 1–4.